\(\overline{R}_{G} = \sqrt[T]{(1+R_{1})\times (1+R_{2})\times \ldots \times (1+R_{\text{T-1}})\times (1+R_{T})} - 1 =\\= \sqrt[T]{\prod_{t=1}^{T}(1+R_{t})} - 1\)

- \(\overline{R}_{G}\) - geometric mean return
- \(R_{t}\) - return in period "t"
- \(T\) - total number of periods